Part Number Hot Search : 
TSOP4833 MMC4508G MC4046 FP5ZC30 03100 C2406 ACT8332 C1367
Product Description
Full Text Search
 

To Download M68AW256ML70ZB6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M68AW256M
4 Mbit (256K x16) 3.0V Asynchronous SRAM
FEATURES SUMMARY

SUPPLY VOLTAGE: 2.7 to 3.6V 256K x 16 bits SRAM with OUTPUT ENABLE EQUAL CYCLE and ACCESS TIME: 55ns, 70ns SINGLE BYTE READ/WRITE LOW STANDBY CURRENT LOW VCC DATA RETENTION: 1.5V TRI-STATE COMMON I/O AUTOMATIC POWER DOWN TSOP44, and TFBGA48 PACKAGES - Compliant with Lead-Free Soldering Processes - Standard or Lead-Free Option
Figure 1. Packges
44
1
TSOP44 Type II (ND)
FBGA
TFBGA48 (ZH) 6 x 8mm
FBGA
TFBGA48 (ZB) 7 x 8mm
April 2004
1/23
M68AW256M
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Packges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Table 1. Figure 3. Figure 4. Figure 5. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Output Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 4. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 7. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 8. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.. . . . . . . . . . . . . 12 Figure 10.Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . . 12 Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 11.Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 12.Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 13.UB/LB Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 14.Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 9. Low VCC Data Retention Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 15.TSOP44 II - 44 lead Plastic Thin Small Outline Type II, Package Outline . . . . . . . . . . . 18 Table 10. TSOP 44 II - 44 lead Plastic Thin Small Outline Type II, Package Mechanical Data . . . 18 Figure 16.TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Bottom View Package Outline19 Table 11. TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Package Mechanical Data . . 19 Figure 17.TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline. . . . . 20
2/23
M68AW256M
Table 12. TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . 20 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 13. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 14. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3/23
M68AW256M
SUMMARY DESCRIPTION
The M68AW256M is a 4 Mbit (4,194,304 bit) CMOS SRAM, organized as 262,144 words by 16 bits. The device features fully static operation requiring no external clocks or timing strobes, with equal address access and cycle times. It requires a single 2.7 to 3.6V supply. This device has an automatic power-down feature, reducing the power consumption by over 99% when deselected. The M68AW256 is available in TFBGA48 (6x8mm - 6x8 active ball array, 0.75mm pitch), TFBGA48 (7x8mm - 6x8 active ball array, 0.75 mm pitch) and in TSOP44 Type II packages. In addition to the standard version, both packages are also available in Lead-free version, in compliance with the JEDEC Std J-STD-020B, the ST ECOPACK 7191395 Specification, and the RoHS (Restriction of Hazardous Substances) directive. All packages are compliant with Lead-free soldering processes.
Figure 2. Logic Diagram
VCC
Table 1. Signal Names
A0-A17 DQ0-DQ15 Address Inputs Data Input/Output Chip Enable Output Enable Write Enable Upper Byte Enable Input Lower Byte Enable Input Supply Voltage Ground Not Connected Internally Don't Use as Internally Connected
18 A0-A17 W
16 DQ0-DQ15
E G W UB
E M68AW256M G UB LB
LB VCC VSS NC DU
VSS
AI04870b
4/23
M68AW256M
Figure 3. TSOP Connections
A4 A3 A2 A1 A0 E DQ0 DQ1 DQ2 DQ3 VCC VSS DQ4 DQ5 DQ6 DQ7 W A16 A15 A14 A13 A12
44 1 2 43 42 3 4 41 5 40 6 39 7 38 8 37 9 36 10 35 11 34 M68AW256M 12 33 13 32 14 31 15 30 16 29 28 17 27 18 26 19 25 20 24 21 22 23
AI04871b
A5 A6 A7 G UB LB DQ15 DQ14 DQ13 DQ12 VSS VCC DQ11 DQ10 DQ9 DQ8 NC A8 A9 A10 A11 A17
5/23
M68AW256M
Figure 4. TFBGA Connections (Top view through package)
1 2 3 4 5 6
A
LB
G
A0
A1
A2
NC
B
DQ8
UB
A3
A4
E
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
A17
A7
DQ3
VCC
E
VCC
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
NC
A12
A13
W
DQ7
H
NC
A8
A9
A10
A11
DU
AI03955
6/23
M68AW256M
Figure 5. Block Diagram
VCC VSS ROW DECODER A7 MEMORY ARRAY
A17
DQ15 UB
(8)
I/O CIRCUITS COLUMN DECODER
DQ0 LB
(8)
A0 (8) W E (8) LB G UB
A6
UB LB
AI04833
7/23
M68AW256M
OPERATION
The device has four standard operating modes: Output Disabled, Read, Write and Standby/Power-Down. These modes are determined by the control inputs E, W, G, LB and UB as summarized in Table 2., Operating Modes. Output Disabled. The Output Enable signal, G, provides high-speed tri-state control of DQ0DQ15, allowing fast read/write cycles on the I/O data bus. The device is in Output Disabled mode when Output Enable, G, is High. In this mode, LB and UB are Don't care and DQ0-DQ15 are high impedance. Read Mode. The M68AW256M is in the Read mode whenever Write Enable (W) is High with Output Enable (G) Low, and Chip Enable (E) is asserted. This provides access to data from eight or sixteen, depending on the status of the signal UB and LB, of the 4,194,304 locations in the static memory array, specified by the 18 address inputs.If only one of the Byte Enable inputs is at VIL, the M68AW256M is in Byte Read mode. If the two Byte Enable inputs are at VIL, the M68AW256M is in Word Read mode. So depending on the status of the UB and LB signals, valid data will be available on the lower eight, the upper eight or all sixteen output pins, tAVQV after the last stable address, providing G is Low and E is Low. If either of E or G is asserted after tAVQV has elapsed, data access will be measured from the limiting parameter (tELQV, tGLQV or tBLQV) rather than the address. Data out may be indeterminate at tELQX, tGLQX and tBLQX but data lines will always be valid at tAVQV. Table 2. Operating Modes
Operation Deselected (Standby/Power-Down) Lower Byte Read Lower Byte Write Output Disabled Upper Byte Read Upper Byte Write Word Read Word Write Output Disabled
Note: 1. X = VIH or VIL.
Write Mode. The M68AW256M is in the Write mode whenever the W and E are Low. Either the Chip Enable input (E) or the Write Enable input (W) must be de-asserted during Address transitions for subsequent write cycles. When E (W) is Low, and UB or LB is Low, write cycle begins on the W (E)'s falling edge. When E and W are Low, and UB = LB = High, write cycle begins on the first falling edge of UB or LB. Therefore, address setup time is referenced to Write Enable, Chip Enable or UB/LB as tAVWL, tAVEL and tAVBL respectively, and is determined by the latter occurring edge. The Write cycle can be terminated by the earlier rising edge of E, W or UB/LB. If the Output is enabled (E = Low, G = Low, LB or UB = Low), then W will return the outputs to high impedance within tWLQZ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data input must be valid for tDVWH before the rising edge of Write Enable, or for tDVEH before the rising edge of E, or for tDVBH before the rising edge of UB/LB whichever occurs first, and remain valid for tWHDX, tEHDX and tBHDX respectively. Standby/Power-Down. The M68AW256M has a Chip Enable power down feature which invokes an automatic standby mode whenever either Chip Enable is de-asserted (E = High) or LB and UB are de-asserted (LB and UB = High). An Output Enable (G) signal provides a high speed tri-state control, allowing fast read/write cycles to be achieved with the common I/O data bus. Operational modes are determined by device control inputs W, E, LB and UB as summarized in the Operating Modes table (see Table 2).
E VIH X VIL VIL VIL VIL VIL VIL VIL VIH
W X X VIH VIL VIH VIH VIL VIH VIL X
G X X VIL X VIH VIL X VIL X VIH
LB X VIH VIL VIL X VIH VIH VIL VIL X
UB X VIH VIH VIH X VIL VIL VIL VIL X
DQ0-DQ7 Hi-Z Hi-Z Data Output Data Input Hi-Z Hi-Z Hi-Z Data Output Data Input Hi-Z
DQ8-DQ15 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Data Output Data Input Data Output Data Input Hi-Z
Power Standby (ISB) Standby (ISB) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Active (ICC)
8/23
M68AW256M
MAXIMUM RATING
Stressing the device above the rating listed in the Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not imTable 3. Absolute Maximum Ratings
Symbol IO (1) TA TSTG TLEAD VCC VIO (4) PD Output Current Ambient Operating Temperature Storage Temperature Lead Temperature during Soldering(2) Supply Voltage Input or Output Voltage Power Dissipation Parameter Value 20 -55 to 125 -65 to 150 260(3) -0.5 to 4.6 -0.5 to VCC +0.5 1 Unit mA C C C V V W
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
Note: 1. One output at a time, not to exceed 1 second duration. 2. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST ECOPACK(R) 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU. 3. Not exceeding 250C for more than 30s, and peaking at 260C. 4. Up to a maximum operating VCC of 3.6V only.
9/23
M68AW256M
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measurement Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.
Table 4. Operating and AC Measurement Conditions
Parameter VCC Supply Voltage Range 1 Ambient Operating Temperature Range 6 Load Capacitance (CL) Output Circuit Protection Resistance (R1) Load Resistance (R2) Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages Output Transition Timing Ref. Voltages -40 to 85C 30pF 3.0k 3.1k 1ns/V 0 to VCC VCC/2 VRL = 0.3VCC; VRH = 0.7VCC M68AW256M 2.7 to 3.6V 0 to 70C
Figure 6. AC Measurement I/O Waveform
Figure 7. AC Measurement Load Circuit
VCC
I/O Timing Reference Voltage R1 VCC VCC/2 0V DEVICE UNDER TEST CL Output Timing Reference Voltage VCC 0.7VCC 0.3VCC
AI05831
OUT
R2
0V
CL includes probe and 1 TTLcapacitance
AI05832
10/23
M68AW256M
Table 5. Capacitance
Symbol CIN COUT Parameter(1,2) Input Capacitance on all pins (except DQ) Output Capacitance Test Condition VIN = 0V VOUT = 0V Min Max 8 10 Unit pF pF
Note: 1. Sampled only, not 100% tested. 2. At TA = 25C, f = 1 MHz, VCC = 3.0V.
Table 6. DC Characteristics
-L Symbol Parameter Test Condition Min ICC1 (1,2) ICC2 (3) Operating Supply Current VCC = 3.6V, f = 1/tAVAV, IOUT = 0mA 70ns 55ns Max 20 26 2 Min Max 10 15 2 mA mA mA -N Unit
Operating Supply Current Standby Supply Current CMOS Input Leakage Current Output Leakage Current Input High Voltage Input Low Voltage Output High Voltage Output Low Voltage
VCC = 3.6V, f = 1MHz, IOUT = 0mA VCC = 3.6V, f = 0, E VCC -0.2V or LB=UB VCC -0.2V 0V VIN VCC 0V VOUT VCC (4) -1 -1 2.2 -0.3 IOH = -1.0mA IOL = 2.1mA 2.4
ISB ILI ILO VIH VIL VOH VOL
Note: 1. 2. 3. 4.
20 1 1 VCC + 0.3 0.6 -1 -1 2.2 - 0.3 2.4 0.4
20 1 1 VCC + 0.3 0.6
A A A V V V
0.4
V
Average AC current, cycling at tAVAV minimum. E = VIL, LB OR/AND UB = VIL, VIN = VIL OR VIH. E 0.2V, LB OR/AND UB 0.2V, VIN 0.2V OR VIN VCC -0.2V. Output disabled.
Figure 8. Address Controlled, Read Mode AC Waveforms
tAVAV A0-A17 tAVQV DQ0-DQ7 and/or DQ8-DQ15 DATA VALID VALID tAXQX
AI03956b
Note: E = Low, G = Low, W = High, UB = Low and/or LB = Low.
11/23
M68AW256M
Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.
tAVAV A0-A17 tAVQV tELQV E tELQX tGLQV G tGLQX DQ0-DQ15 tBLQV UB, LB tBLQX
AI03957c
VALID tAXQX tEHQZ
tGHQZ
VALID tBHQZ
Note: Write Enable (W) = High.
Figure 10. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms
E, UB, LB ICC ISB tPU 50% tPD
AI03856
12/23
M68AW256M
Table 7. Read and Standby Mode AC Characteristics
M68AW256M Symbol tAVAV tAVQV tAXQX (1) tBHQZ (2,3) tBLQV tBLQX (1) tEHQZ (2,3) tELQV tELQX (1) tGHQZ (2,3) tGLQV tGLQX (2) tPD (4) tPU (4) Read Cycle Time Address Valid to Output Valid Data hold from address change Upper/Lower Byte Enable High to Output Hi-Z Upper/Lower Byte Enable Low to Output Valid Upper/Lower Byte Enable Low to Output Transition Chip Enable High to Output Hi-Z Chip Enable Low to Output Valid Chip Enable Low to Output Transition Output Enable High to Output Hi-Z Output Enable Low to Output Valid Output Enable Low to Output Transition Chip Enable or UB/LB High to Power Down Chip Enable or UB/LB Low to Power Up Parameter 55 Min Max Min Max Max Min Max Max Min Max Max Min Max Min 55 55 5 20 55 5 20 55 5 20 25 5 0 55 70 70 70 5 25 70 5 25 70 5 25 35 5 0 70 ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit
Note: 1. Test conditions assume transition timing reference level = 0.3VCC or 0.7VCC. 2. At any given temperature and voltage condition, tGHQZ is less than tGLQX, tBHQZ is less than tBLQX and tEHQZ is less than tELQX for any given device. 3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. 4. Tested initially and after any design or process changes that may affect these parameters.
13/23
M68AW256M
Figure 11. Write Enable Controlled, Write AC Waveforms
tAVAV A0-A17 VALID tAVWH tELWH E tWLWH tAVWL W tWLQZ tWHDX DQ0-DQ15 DATA INPUT tDVWH tBLWH UB, LB
AI03958c
tWHAX
tWHQX
Figure 12. Chip Enable Controlled, Write AC Waveforms
tAVAV A0-A17 VALID tAVEH tAVEL E tWLEH W tEHDX DQ0-DQ15 DATA INPUT tDVEH tBLEH UB, LB
AI03959c
tELEH
tEHAX
14/23
M68AW256M
Figure 13. UB/LB Controlled, Write AC Waveforms
tAVAV A0-A17 VALID tAVBH tELBH E tWLBH W tBHDX DQ0-DQ15 DATA (1) DATA INPUT tDVBH tAVBL UB, LB
AI03987c
tBHAX
tBLBH
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.
15/23
M68AW256M
Table 8. Write Mode AC Characteristics
M68AW256M Symbol tAVAV tAVBH tAVBL tAVEH tAVEL tAVWH tAVWL tBHAX tBHDX tBLBH tBLEH tBLWH tDVBH tDVEH tDVWH tEHAX tEHDX tELBH tELEH tELWH tWHAX tWHDX tWHQX (1) tWLBH tWLEH tWLQZ (1,2) tWLWH Write Cycle Time Address Valid to LB, UB High Addess Valid to LB, UB Low Address Valid to Chip Enable High Address valid to Chip Enable Low Address Valid to Write Enable High Address Valid to Write Enable Low LB, UB High to Address Transition LB, UB High to Input Transition LB, UB Low to LB, UB High LB, UB Low to Chip Enable High LB, UB Low to Write Enable High Input Valid to LB, UB High Input Valid to Chip Enable High Input Valid to Write Enable High Chip Enable High to Address Transition Chip enable High to Input Transition Chip Enable Low to LB, UB High Chip Enable Low to Chip Enable High Chip Enable Low to Write Enable High Write Enable High to Address Transition Write Enable High to Input Transition Write Enable High to Output Transition Write Enable Low to LB, UB High Write Enable Low to Chip Enable High Write Enable Low to Output Hi-Z -L version Write Enable Low to Write Enable High -N version Min 40 50 ns Parameter 55 Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Max Min 55 45 0 45 0 45 0 0 0 45 45 45 25 25 25 0 0 45 45 45 0 0 5 45 45 20 45 70 70 60 0 60 0 60 0 0 0 60 60 60 30 30 30 0 0 60 60 60 0 0 5 60 60 20 60 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit
Note: 1. At any given temperature and voltage condition, tWLQZ is less than tWHQX for any given device. 2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
16/23
M68AW256M
Figure 14. Low VCC Data Retention AC Waveforms
DATA RETENTION MODE 3.6V VCC 2.7V
VDR > 1.5V tCDR E VDR - 0.2V or UB=LB VDR - 0.2V E, UB/LB tR
AI03989
Table 9. Low VCC Data Retention Characteristics
Symbol Parameter Test Condition VCC = 1.5V, E VCC -0.2V or UB = LB VCC -0.2V, f = 0 (3) 0 tAVAV E VCC -0.2V or UB = LB VCC -0.2V, f = 0 1.5 Min Typ 4.5 Max 9 Unit A ns ns V
ICCDR (1) Supply Current (Data Retention) Chip Deselected to Data tCDR (1,2) Retention Time tR (2) VDR (1) Operation Recovery Time Supply Voltage (Data Retention)
Note: 1. All other Inputs at VIH VCC -0.2V or VIL 0.2V. 2. Tested initially and after any design or process changes that may affect these parameters. tAVAV is Read cycle time. 3. No input may exceed VCC +0.2V.
17/23
M68AW256M
PACKAGE MECHANICAL
Figure 15. TSOP44 II - 44 lead Plastic Thin Small Outline Type II, Package Outline
D
N
E1
E
1
N/2
ZD
b
e
A
A2 C CP A1 L
TSOP-d
Note: Drawing is not to scale.
Table 10. TSOP 44 II - 44 lead Plastic Thin Small Outline Type II, Package Mechanical Data
Symbol A A1 A2 b c D E E1 e L ZD alfa CP N 44 18.410 11.760 10.160 0.800 0.500 0.805 0.350 0.120 - - - - 0.400 - 0 0.210 - - - - 0.600 - 5 0.100 44 0.7248 0.4630 0.4000 0.0315 0.0197 0.0317 0.050 0.950 millimeters Typ Min Max 1.200 0.150 1.050 0.0138 0.0047 - - - - 0.0157 - 0 0.0083 - - - - 0.0236 - 5 0.0039 0.0020 0.0374 Typ inches Min Max 0.0472 0.0059 0.0413
18/23
M68AW256M
Figure 16. TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Bottom View Package Outline
D FD FE SD D1
SE BALL "A1" E E1 ddd
e e A A1 b A2
BGA-Z26
Note: Drawing is not to scale.
Table 11. TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b D D1 ddd E E1 e FD FE SD SE 8.000 5.250 0.750 1.125 1.375 0.375 0.375 7.900 - - - - - - 6.000 3.750 0.350 5.900 - 0.260 0.900 0.450 6.100 - 0.100 8.100 - - - - - - 0.3150 0.2067 0.0295 0.0443 0.0541 0.0148 0.0148 0.3110 - - - - - - 0.2362 0.1476 0.0138 0.2323 - Min Max 1.200 0.0102 0.0354 0.0177 0.2402 - 0.0039 0.3189 - - - - - - Typ Min Max 0.0472 inches
19/23
M68AW256M
Figure 17. TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline
D FD FE SD D1
SE E E1 BALL "A1" ddd
e e A A1 b A2
BGA-Z22
Note: Drawing is not to scale.
Table 12. TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b D D1 ddd E E1 e FD FE SD SE 8.000 5.250 0.750 1.625 1.375 0.375 0.375 7.900 - - - - - - 7.000 3.750 0.350 6.900 - 0.260 0.900 0.450 7.100 - 0.100 8.100 - - - - - - 0.3150 0.2067 0.0295 0.0640 0.0541 0.0148 0.0148 0.3110 - - - - - - 0.2756 0.1476 0.0138 0.2717 - Min Max 1.200 0.0102 0.0354 0.0177 0.2795 - 0.0039 0.3189 - - - - - - Typ Min Max 0.0472 inches
20/23
M68AW256M
PART NUMBERING
Table 13. Ordering Information Scheme
Example: Device Type M68 Mode A = Asynchronous Operating Voltage W = 2.7 to 3.6V Array Organization 256 = 4 Mbit (256K x16) Option 1 M = 1 Chip Enable; Write and Standby from UB and LB Option 2 L = L-Die N = N-Die Speed Class 55 = 55 ns 70 = 70 ns Package ND = TSOP 44 Type II ZH = TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch ZB= TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch Operative Temperature 1 = 0 to 70 C 6 = -40 to 85 C Shipping Blank = Standard Packing (Tray) T = Tape & Reel Packing E = Lead-Free Package, Standard Packing (Tray) F = Lead-Free Package, Tape and Reel Packing M68AW256 M L 55 ZB 6 T
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
21/23
M68AW256M
REVISION HISTORY
Table 14. Document Revision History
Date February 2002 13-Mar-2002 17-Jun-2002 Version -01 -02 -03 First Issue Tables 4, 7 and 9 clarified Figure 14 clarified ICCDR clarified (Table 9) ISB clarified (Table 6) Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 03 equals 3.0). Part number modified. TFBGA48 7x8 replaced by TFBGA48 6x7: Figure 16., TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Bottom View Package Outline and Table 11., TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Package Mechanical Data updated. ICC1 and ISB updated in Table 6., DC Characteristics. tWLWH updated in Table 8., Write Mode AC Characteristics . Minor content modifications. FEATURES SUMMARY, SUMMARY DESCRIPTION, Table 13., Ordering Information Scheme updated with Package Lead-free information. TLEAD parameter added in Table 3., Absolute Maximum Ratings. TFBGA48 7x8mm - 6x8 active ball array, 0.75mm pitch reintroduced. TFBGA 6x7mm -6x8mm active ball array replaced by TFBGA48 6x8mm- 6x8 active ball array, 0.75mm pitch. Revision Details
09-Oct-2002
3.1
20-Feb-2004
4.0
27-Apr-2004
5.0
22/23
M68AW256M
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. ECOPACK(R) is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States www.st.com
23/23


▲Up To Search▲   

 
Price & Availability of M68AW256ML70ZB6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X